Ph.D. Qualifying Exam: Differential Geometry August 2015

Name:

Note: Please use English for your answers.

- 1. [20 pts] Suppose M to be a smooth manifold without boundary and N to be a smooth manifold with boundary. Prove or disprove that
 - (a) $M \times N$ is a smooth manifold with boundary;
 - (b) $N \times N$ is a smooth manifold with boundary.
- 2. [15 pts] Let $F: \mathbb{R}^n \to \mathbb{RP}^n$ be the map defined by

$$F(x_1, x_2, \ldots, x_n) = [x_1 x_2 \ldots, x_n, 1].$$

Show it is a diffeomorphism onto a dense subset of \mathbb{RP}^n .

- 3. [15 pts] Let M be a smooth manifold. If K is a closed subset of M, shows there exists a non-negative smooth function $f: M \to \mathbb{R}$ such that $f^{-1}(0) = M$.
- 4. [15 pts] Let $K \subset \mathbb{R}^2$ be the boundary of the square with center (0,0) and sides of length equal to 2 and $C = \{(x,y) \in \mathbb{R}^2, x^2 + y^2 = 1\}$. Show there exists a homeomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that f(C) = K and there is no diffeomorphism with the same property.
- 5. [10 pts] Let M be a smooth manifold without boundary, N a smooth manifold with boundary, and $F: M \to N$ a smooth map. Show that if at $p \in M$ the differential dF_p is non-singular then F(p) is a point contained in the interior of N.
- 6. [10 pts] Show that every compactly supported smooth vector field on a smooth manifold is complete.
- 7. [15 pts] Let G be a Lie group.
 - (a) Let $m: G \times G \to G$ denote the multiplication map. Show that the differential $dm_{(e,e)}: T_e(G \times G) \to T_eG$ is given by

$$dm_{(e,e)}(X,Y) = X + Y.$$

(b) Let $i:G\to G$ denote the inversion map. Show that the differential $di_e:T_eG\to T_eG$ is given by

$$di_e(X) = -X.$$

Ph.D. Qualifying Exam: Algebraic Topology I August 2015

Name:

Note: Please use English for your answers.

- 1. Let X be the 1-skeleton of a 3-simplex and let $Y \to X$ be a 2-fold covering map such that Y is connected.
 - (a) [5 pts] Find the Euler characteristic of Y.
 - (b) [5 pts] Describe $\pi_1(Y)$.
 - (c) [10 pts] Find two different homeomorphism types for Y and for each of them describe a covering map $Y \to X$
- 2. [15 pts] Show that the complement of a finite set of points in \mathbb{R}^n is simply-connected if $n \geq 3$.
- 3. As shown in the figure the torus T and the sphere S is intersecting in two disjoint circles. Let $X = S \cup T$.

- (a) [10 pts] Find a finite cell-complex structure on X.
- (b) [15 pts] Compute $H_i(X)$, for i = 1, 2.
- 4. Let $0 \to \mathcal{A} \xrightarrow{\phi} \mathcal{B} \xrightarrow{\psi} \mathcal{C} \to 0$ be a short exact sequence of chain complexes $\mathcal{A} = \{A_n, \partial\}, \ \mathcal{B} = \{B_n, \partial\}, \ \mathcal{C} = \{C_n, \partial\}$ and chain maps ϕ and ψ .
 - (a) [10 pts] Construct the connecting homomorphisms $\partial_*: H_n(\mathcal{C}) \to H_{n-1}(\mathcal{A})$ making the sequence

$$\to H_{n+1}(\mathcal{C}) \xrightarrow{\partial_*} H_n(\mathcal{A}) \xrightarrow{\phi_*} H_n(\mathcal{B}) \xrightarrow{\psi_*} H_n(\mathcal{C}) \xrightarrow{\partial_*} H_{n-1}(\mathcal{A}) \xrightarrow{\phi_*} H_{n-1}(\mathcal{B}) \to \text{exact.}$$

- (b) [15 pts] Show that the above sequence is exact.
- 5. [15 pts] Let $A \subset X$ and let $X \cup CA$ denote the mapping cone of the inclusion map $A \hookrightarrow X$. Prove that $H_n(X \cup CA, X) \approx \widetilde{H}_{n-1}(A)$.

Ph.D. Qualifying Exam: Real Analysis August 2015

Name:

Note: Please use English for your answers.

- 1. Compute the following limit and justify the calculation:
 - (a) [5 pts]

$$\sum_{n=0}^{\infty} \int_0^{\pi/4} (1 - \sqrt{\sin x})^n \cos x \ dx.$$

(b) [10 pts]

$$\lim_{n \to \infty} \int_0^\infty \frac{\sin(x^n)}{x^n} \ dx.$$

- 2. [15 pts] We denote \mathcal{L} the class of Lebesgue measurable sets and m the Lebesgue measure. Prove the following: If $E \in \mathcal{L}$ and m(E) > 0, then for any $\alpha < 1$ there is an open interval I such that $m(E \cap I) > \alpha m(I)$.
- 3. [15 pts] Let (X, \mathcal{M}, μ) be a σ -finite positive measure space and $\{\nu_n\}$ be a sequence of σ -finite positive measures on \mathcal{M} with $\nu_n \ll m$ for all $n \in \mathbb{N}$ such that

$$\nu_n(E) \le \nu_{n+1}(E)$$
, for all $n \in \mathbb{N}$, $E \in \mathcal{M}$.

Define $\nu(E) = \lim_{n \to \infty} \nu_n(E)$ for each $E \in \mathcal{M}$. Show that ν defines a measure on \mathcal{M} and ν satisfies $\nu \ll \mu$. And express $\frac{d\nu}{d\mu}$ in terms of ν_n .

- 4. [20 pts] Let X and Y be Banach spaces. Let T be a surjective bounded linear map from X to Y. Show that T is open.
- 5. Prove the following statement:
 - (a) [10 pts] If A is any set and $0 , then <math>l^p(A) \subset l^q(A)$.
 - (b) [10 pts] Let (X, \mathcal{M}, μ) be a measure space. If $\mu(X) < \infty$ and $0 , then <math>L^q(\mu) \subset L^p(\mu)$.
- 6. [15 pts] Let $f_n, f \in L^p[0,1]$ with $1 \leq p < \infty$. Suppose that $f_n \to f$ pointwise. Prove that $||f_n f||_p \to 0$ if and only if $||f_n||_p \to ||f||_p$ as $n \to \infty$.

Ph.D. Qualifying Exam: Complex Analysis August 2015

Name:

Note: Please use English for your answers.

- 1. [15 pts] State and give a proof of the Argument Principle.
- 2. [15 pts] State and give a proof of the Rouché Theorem.
- 3. [10 pts] Explain why each of the polynomials $p(z)=2z^{10}+4z^2+1$ and $q(z)=2z^{10}-4z^2+1$ has exactly two zeroes in the disk |z|<1.
- 4. [15 pts] Determine the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$ integrating

$$f(z) = \frac{\pi \cot \pi z}{z^2}$$

on an appropriate domain.

- 5. [15 pts] Find the Hadamard factorization of the function $e^z 1$.
- 6. [15 pts] Explain why the function:

$$f(z) := \int_0^z \frac{d\xi}{(1 - \xi^2)^{\frac{1}{2}}}$$

maps the upper half-plane H conformally to the strip

$$S:=\{x+iy\in\mathbb{C}, |x|<\frac{\pi}{2}, y>0\}.$$

7. [15 pts] Show that all conformal mappings from the upper half-plane $\mathbb H$ to the unit disk $\mathbb D$ take the form

 $e^{i\theta}\frac{z-\beta}{z-ar{\beta}},$

with $\theta \in \mathbb{R}$, $\beta \in \mathbb{H}$.

Ph.D. Qualifying Exam: Advanced Statistics August 2015

Name:

Note: Please use English for your answers.

- 1. Let X_1, \dots, X_n be a random sample from Exponential distribution $Exp(\lambda)$ with pdf $f(x; \lambda) = \lambda^{-1} e^{-x/\lambda}$ and let $X_{(i)}$ be the *i*th smallest of the sample.
 - (a) [5 pts] Find $E(X_{(1)})$.
 - (b) [7 pts] Let $S_j = \sum_{i=1}^j X_i$. Find the distribution of S_k/S_n , $1 \le k < n$.
 - (c) [12 pts] Let n=3. Find the best unbiased estimator of $P(X_{(1)} \ge 1)$ if it exists.
- 2. [10 pts] Let X_1, \dots, X_n be a random sample from $f(x; \theta)$, where $f(x; \theta)$ satisfies the condition of the Cramér-Rao Theorem. Let $W = W(X_1, \dots, X_n)$ is an unbiased estimator of $\tau(\theta)$. Prove that Var(W) attains the Cramér-Rao Lower Bound if and only if W is a linear function of $\frac{\partial}{\partial \theta} \log f(X_1, \dots, X_n; \theta)$.
- 3. [10 pts] Let X_1, \dots, X_n be a random sample from $f(x; \theta)$. Let T_1 be a minimal sufficient statistic and T_2 a sufficient statistic for θ . Let W be an unbiased estimator of θ . Define $U_i = E(W|T_i)$, i = 1, 2.

Compare $Var(U_1)$ with $Var(U_2)$. Which is larger? Why?

4. Let X_1, X_2 be independent with $X_i \sim N(0, \sigma_i^2)$ where σ_i 's $(\sigma_1 < \sigma_2)$ are known. Let Λ be a Bernoulli random variable with probability of success θ . Define

$$Y = \Lambda X_1 + (1 - \Lambda)X_2. \tag{1}$$

Y is generated in two steps: First, generate X_1, X_2 , and Λ ; Then obtain Y by the formula (1).

Suppose we have a random sample Y_1, \dots, Y_n from the distribution of Y and we don't have any observations on X_1, X_2 , and Λ . In other words, we have observations only on Y_i 's.

Denote the pdf of $N(0, \sigma_i^2)$ by f_i , i = 1, 2. Note that the MLE $\hat{\theta}$ of θ is not given in a closed form.

- (a) [3 pts] Write down the log-likelihood function of θ .
- (b) [3 pts] Derive an estimating equation for $\hat{\theta}$. [The estimating equation is given by $\partial(\log-\text{likelihood function})/\partial\theta=0$.]
- (c) [10 pts] What is the condition so that the MLE $\hat{\theta}$ lies in the interval (0, 1)?

- 5. Let X_1, \dots, X_n be iid Bernoulli random variables with probability of success θ . Let $T = \sum_{i=1}^n X_i$.
 - (a) [10 pts] For k < n, find the best unbiased estimator of $P(X_1 X_2 \cdots X_k = 1)$ if it exists.
 - (b) [4 pts] Find the MGF of T.
 - (c) [10 pts] Find the limiting distribution of $\sqrt{n}(T/n \theta)$.
- 6. Let X_1, \dots, X_n be a random sample and let \bar{X} and S^2 be the sample mean and the sample variance respectively. Denote $\theta_1 = E(X_1)$, $\theta_j = E(X_1 \theta_1)^j$, $j = 2, 3, \dots$.
 - (a) [3 pts] Show that

$$S^{2} = \frac{1}{2n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{n} (X_{i} - X_{j})^{2}.$$

- (b) [5 pts] Find $Cov(\bar{X}, S^2)$ in terms of θ_j , j = 1, 2, 3, 4.
- (c) [8 pts] Find $Var(S^2)$ in terms of θ_j , j = 1, 2, 3, 4.

Ph.D. Qualifying Exam: Combinatorics August 2015

Name:

Note: Please use English for your answers.

- 1. (20 pts) Let A_1, A_2, \ldots, A_m be distinct subsets of $\{1, 2, \ldots, n\}$. Prove that if $|A_i \cup A_j|$ is odd for all $i \neq j$, then $m \leq 2^{\lfloor n/2 \rfloor}$.
- 2. (20 pts) Prove that there exists N such that every set of N distinct points in \mathbb{R}^2 having no three points in a line must contain 10 points which are the vertices of a convex 10-gon.
- 3. (20 pts) Prove that there exists c > 0 such that every set of N positive integers admits a subset B of more than cN integers such that $x + y + z \notin B$ for all $x, y, z \in B$.
- 4. (20 pts) Let R(t, t, t) be the minimum n such that every coloring of the edges of the complete graph K_n with 3 colors induces a monochromatic complete subgraph consisting of t vertices. Prove that $R(t, t, t) > 3^{t/2}$ for all t > 4.
- 5. (20 pts) Let a_1, a_2, \ldots, a_m be distinct points in the *n*-sphere S^n in \mathbb{R}^{n+1} . Prove that if there exist $d_1, d_2, d_3 \in \mathbb{R}$ such that $||a_i a_j|| \in \{d_1, d_2, d_3\}$ for all $i \neq j$, then $m \leq \binom{n+1}{3}$.